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Design and characterisation of the staggered herringbone mixer
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Abstract

The staggered herringbone mixer was studied using computational fluid dynamics (CFD) and particle tracking methods. The positions of tracer
particles as well as the stretching of a fluid element associated with each tracer particle were tracked using a fourth order Runge-Kutta integration
scheme with adaptive time stepping. Striation patterns observed were in qualitative agreement with experimental work from literature. The computed
stretch values were found to be log-normally distributed. The specific stretch per period for a spatially periodic flow was computed. This allows
for an estimation of the required length for complete mixing by further accounting the penetration depth achieved by molecular diffusion. The
microchannel lengths for complete mixing computed using the mean stretch were lower than those obtained experimentally. This was attributed
mainly to the fact that the experimentally derived values were measured in the central 50% of the mixer cross-section where striation thickness
reduction can be observed to be slower. Furthermore, the specific stretch per period represents the mean stretch value while in reality the stretch
values are distributed log-normally. In the design of mixers, a conservative estimate of the required mixing length can be obtained by replacing the
mean stretch per period with a value which represents the cut-off point for the lower 10% of the distribution. The design lengths computed using
these values were slightly higher than experimental ones and found to exhibit the same trend with increasing Peclet number. The pressure drop at

various Re was also investigated and was found to be slightly lower than that of an equivalent grooveless channel.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, microfluidic systems have gained widespread
applications in a number of fields such as analytical chemistry,
high-throughput synthesis and microchemical processing. One
aspect of microfluidic systems that has attracted considerable
interest is the mixing of fluids in miniaturized systems. Fluid
flows in miniaturized systems are characterized by low values
of Reynolds number (Re = pud/i). At low-Re number, the flow
is laminar and mixing occurs only by molecular diffusion. The
characteristic length scales in microfluidic applications are fre-
quently of the order of several hundred microns, which allow
rapid mixing by molecular diffusion alone. Examples of such
mixers include the T-type and Y-type micromixers [1,2]. How-
ever, in cases where the molecular diffusivity is very low (in
biotechnology applications for example, molecular diffusivity
for proteins are typically around 10~ m?/s), mixing by molec-
ular diffusion becomes very slow, requiring lengths of up to
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several metres for complete mixing to occur. Various micromixer
designs have been reported in the literature. These include var-
ious flow lamination mixers such as interdigital micromixers
[3-5], split and recombine mixers [6], geometric focusing mix-
ers [3-5,7], secondary flow micromixers [8] and chaotic mixers
[9-11]. Detailed reviews of the various types of micromixers are
available elsewhere [12-15].

Chaotic micromixers, where the fluid volumes are stretched
and folded over the cross-section of the channel, are particu-
larly effective for reducing the mixing length. The stretching
and folding of fluid volumes proceed exponentially as a func-
tion of the axial distance travelled, accelerating mass transfer
by increasing the interfacial area and decreasing the striation
thickness over which diffusion must occur for complete homog-
enization. One of the earliest reports on chaotic micromixers
was based on placing microstructured objects within the flow
passage on one side of the microchannel walls. Bas-relief struc-
tures, such as oblique ridges and staggered herringbones on the
floor of channels were used to induce steady chaotic flows in
the slanted groove [16] and staggered herringbone micromixers,
respectively [17]. The staggered herringbone offered superior
mixing performance at low Re numbers, low resistance to flow
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Nomenclature

a ratio of the groove half height to the channel
height

A COV of unmixed inlet stream, see (6)

B rate of decrease of the COV, see (6)

COV  coefficient of variance

d characteristic length (m)

dg channel equivalent diameter (m)

D diffusion coefficient (m?/s)

h channel height (m)

H, normalised helicity

l fluid filament vector tracked for stretching com-
putations

ly initial condition for vector [

L length (m)

Leycle  length per mixing cycle (m)

m mean

n mixing cycle number

Nmix number of cycles for complete mixing

nyo required number of mixing cycles computed using
ogp values

N number of particles

N; number of particles cell i

Nt total number of particles within the grid

Nto initial number of tracked particles

N average particle concentration per cell

p degree of asymmetry of herringbone grooves

Pe Peclet number

AP pressure drop (Pa)

q Groove wave vector

[0) volumetric flow (m3)

Re Reynolds number

s(0) striation thickness at time =0 (pm)

s(n) striation thickness after n cycles (pm)

S Shannon entropy (bits)

t time (s)

u velocity (m/s)

7 average velocity (m/s)

v(x) particle velocity as a function of position (m/s)

(Vv)T velocity gradient tensor s™h

w channel width (pm)

x vector of particle position

y mixing length (m)

Ydif diffusional mixing length (m)

Y50 mixing length computed from asg (m)

Y90 mixing length computed from agg (m)

Greek letters

o
50
®90

S O
=

>

stretching function

stretch per period (based on Ag 50 values)
stretch per period (based on Ag 90 values
Lyapunov exponent (s~ 1)

penetration distance (m)

Groove angle (°)

A stretching experienced by vector I, see (3)

Agso  geometric mean stretch over all vectors on a given
cross-section

Ag,90 cut-off point of the distribution of stretch values
where 90% of stretch values are higher (see Fig. 9)

7 viscosity (Pas)

o density (kg/m3 )

o standard deviation

o2 variance (number based)

T average residence time per mixing cycle (s)
© mass fraction

and is relatively easy to fabricate using planar lithographic meth-
ods. It was found to work well for Reynolds numbers from 1 to
100 and for Peclet numbers of up to 1 x 10°, with the required
mixing length increasing only logarithmically with the Peclet
number.

The flow patterns in bas-relief structured channels have been
studied extensively. A number of numerical studies have been
carried out on grooved microchannel mixers which consid-
ered the effects of various geometric parameters on mixing
performance. Many of the numerical approaches used for char-
acterising mixing performance are based on methods used for
macro-scale static mixers such as the coefficient of variance,
intensity of segregation, stretching histories, Poincaré sections,
rate of strain tensor, number of striations and residence time
distributions [18-20]. Wang et al. [21] evaluated the slanted
groove micromixer using a computational fluid dynamics (CFD)
package to simulate the 3D velocity field for particle tracking
purposes as well as to study two-fluid mixing. Streaklines from
slanted groove microchannels twist in a helical shape, indicating
folding and stretching of fluids. Poincaré maps were generated
by advecting one or a series of passive particles through a series
of periodic planes located at the end of each mixing segment
and each position of the particle which hits this plane was then
recorded. The Poincaré map obtained indicated an increase in
flow irregularity on increasing the groove aspect ratio, with par-
ticle trajectories circling around the flow axis. By counting the
dots per circle in the Poincaré map, the length required for one
complete recirculation was computed, which was then used as a
basis for evaluating mixing performance. The length required
for one complete recirculation decreased exponentially with
increasing groove aspect ratio. The mean helicity, measured
from the angle between the longitudinal channel axis and the
interfacial line of two fluid streams shifted by the helical flow
pattern, was found to be independent of flow velocity and was
a function of geometric parameters only, especially the aspect
ratio of grooves. Schonfeld and Hardt [22] simulated the helical
flows produced in the slanted groove micromixer. The relative
transverse velocities as a function of the vertical position were
evaluated and found to be in good agreement with experimen-
tal results [23]. Double-sided structured channels were found to
increase the relative transverse velocity significantly. The rela-
tive transverse velocities were also found to be independent of
Reynolds number.
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Aubin et al. [24] compared the flow pattern and mixing
behaviour in both the slanted groove and staggered herringbone
mixers using CFD and particle tracking methods. Better mix-
ing was observed in the staggered herringbone micromixer due
to the formation of two helical flows, with alternating small and
large vortices rotating in opposite directions. Calculation of vari-
ance of the dispersion of particle tracers and the mean stretching
of fluid filaments were found to be good methods for character-
izing the mixers while the rate of strain tensor appeared not to
be well adapted for the mixers studied. More recently, Aubin
et al. [25] studied the effects of geometric parameters such as
groove depth, number of grooves per cycle and groove width on
the mixing quality. An alternative method for characterizing the
mixing performance was introduced, which is based on a statis-
tical method called nearest neighbour analysis. Mixing quality
was found to improve with deeper and wider grooves, but was
relatively unaffected by the number of grooves per cycle.

Simple analytical models have been derived for the flow
behaviour in both slanted groove and staggered herringbone
micromixers [23,26]. Poincaré maps and mixing simulations
using the models indicate the existence of an optimal degree of
asymmetry, p (fraction of channel width occupied by the wide
arm of the herringbones) for the herringbone grooves in the
interval 7/12<p<2/3. For a fixed value of the ratio of trans-
verse to axial velocity, a minimum axial length per half-cycle
was required, below which mixing is poor. Yang et al. [27] pre-
sented a numerical study of the effects of geometric parameters
such as depth ratio of the grooves, asymmetry index, groove
intersection angle and upstream to downstream channel width
ratio on the mixing performance of the staggered herringbone
mixer. Two dominant mechanisms of mixing were identified;
the stretching and folding of the interface due to the vertical
motions of flow at the groove’s side edge and the increase in
contact area between the two fluids due to underside fluid trans-
portation. The groove depth ratio and asymmetry index were
found to be the most influential. Results from a pressure loss
analysis indicated better mixing with higher groove flow rate,
which can be achieved by decreasing the asymmetry index and
increasing the depth ratio of the groove. The effect of the groove
asymmetry and the number of grooves per half cycle on the
mixing performance was also investigated by Li and Chen [28],
using the Lattice-Boltzmann method. The optimal value for the
above geometric parameters were found to be 0.6 for the groove
width fraction (a measure of the groove asymmetry) and 5-6
grooves per half cycle.

Kang and Kwon [29] compared the flow characteristics in
slanted groove, staggered herringbone and barrier embedded
slanted groove micromixers using a coloured particle tracking
method. Transverse velocity vector plots at different down-
stream locations as well as Poincaré maps obtained for all three
micromixers indicated chaotic flow for both staggered herring-
bone and barrier embedded micromixers, but no notable chaotic
mechanism was observed for slanted groove micromixers, in
agreement with results reported earlier [21]. Particle tracers
were labelled with a specific colour and the particle trajectories
tracked for 20 periodic units. The coloured particle distributions
were then used to evaluate the mixing quality both qualitatively

as well as quantitatively, using a new method based on mixing
entropy. The staggered herringbone was found to give the best
mixing performance.

Liu et al. [30] presented a numerical study of mixing pure
water and a solution of glycerol in water, in both the 3-D serpen-
tine and staggered herringbone mixers. The effect of different
fluid physical properties was examined by varying the amount of
glycerol in the glycerol/water solution ¢ (i.e. the mass fraction
of glycerol in water) at two different Reynolds number, Re =1
and 10. The mixing performance at both Re, measured via a
mixing index, decreased with increasing ¢, although the varia-
tion in mixing index was smaller at higher Re. Tracer particles
initially located at the two-fluid interface were advected inside
the mixer and the distribution of tracer particles at the outlet
cross-section were more or less identical at different Re and at
different ¢. Inspection of the cross-section mixing concentra-
tion profiles obtained from the numerical simulation revealed
that the breakdown and deformation of the interface between
the two fluids at Re=1 and 10 were similar and independent of
@, although the gray intensity (which represents the mixedness
of the two fluids) at lower Re (at all ¢) was more uniform than the
corresponding picture at higher Re. This was due to the longer
residence time available for diffusional mixing at lower Re. The
gray intensity gradually turned less uniform with increasing ¢,
at both Re, due to lower diffusivity values. Unlike the 3D ser-
pentine mixers, the flow advection in the staggered herringbone
mixer was not enhanced with increasing Re, in agreement with
experimental observation [17].

The velocity generated by the grooves in a staggered her-
ringbone mixer and the effect of varying Re on the generation
of cross-channel flow and mixing have been investigated in
detail by Hassell and Zimmerman [31]. Three representative
geometries were evaluated; a single herringbone groove, a chan-
nel section representing one continuous herringbone cycle and
a third representing a system in which the orientation of the
grooves were constantly switched. As Re increased, the amount
of entrained fluid in the groove decreases and the fluids in the
groove move further across the groove before re-entering the
bulk channel flow at the channel edges. Increasing the groove
depth results in increased fluid entrainment in the grooves lead-
ing to an increase in transverse velocity component in the bulk
flow, in agreement with earlier studies [25]. Successive grooves
resulted in an increase in the transverse velocity components
and a 14% increase in fluid entrainment in grooves compared to
the case of the single groove. The fluid flow in the bulk channel
flow was found to exhibit low helicity which increased slightly
at higher Re.

Recently an alternative method for characterizing and quan-
tifying the degree of mixing was presented by Camesasca et
al. [32]. The Shannon entropy S, which has been previously
employed for a variety of practical applications in polymer
processing, was used to compare the mixing performance in
a plain microchannel, a slanted groove microchannel as well
as the staggered herringbone micromixer. The staggered her-
ringbone mixer was shown to perform better than the slanted
groove mixer, with no mixing observed in the plain channel,
as expected. The method can also be applied to experimen-
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tal data; using experimentally derived pictures of the mixer
cross-section for the staggered herringbone mixer, the change
in entropy with increasing number of cycles was compared to
the values obtained numerically, with excellent agreement in
both values. An alternative way to pattern ridges on the walls
of a simple straight channel to achieve chaotic mixing was also
presented [33]. Three types of non-periodic patterns were gen-
erated using the Weierstrass fractal function to position the tip
of ‘V’ grooves on the bottom channel wall and the performance
of these mixers was compared to a design which was similar
to the staggered herringbone mixer. Qualitative analysis of the
cross-sectional velocity field along the length of the channel as
well as pathlines of particle trajectories and trajectory ‘beams’
confirmed the presence of chaotic flow for all four mixers. Eval-
uation of Lyapunov exponents allowed for a limited assessment
of mixing behaviour while entropic analysis allowed a more
global characterization of mixing performance. Two of the new
mixers designed were found to be more efficient than the one
based on the staggered herringbone mixer. Generalized fractal
dimensions associated with the interface of the two fluids to be
mixed were computed for all four mixer designs and the results
were consistent with results from entropic mixing analysis.

In the current work, the flow behaviour of the staggered her-
ringbone mixer is studied using computational fluid dynamics
and particle tracking methods. Several methods which have pre-
viously been reported for characterising the mixing performance
in macro-scale static mixers such as the coefficient of variance of
the distribution of particle tracers and the stretching histories of
the particles, are used. However, in contrast with previous work
(where mixing quality is determined at a given position along the
length of the mixer), a method for estimating the required mix-
ing length for complete mixing, especially useful in designing
micromixers, is described. Using the geometric mean stretch
computed from the stretching histories, the minimum mixing
length required for complete mixing is computed by taking into
account the rate of striation reduction and diffusional penetration
distance.

2. Numerical methods

The mixer geometry used was kept consistent with that
reported by Stroock et al. [17]. The channel width is 200 pm
and the channel height is 85 wum. The staggered herringbone
mixer is composed of several mixing cycles in series. Each mix-
ing cycle is composed of two sets of herringbone grooves which
are asymmetric with respect to the centre of the channel in the
axial direction. The orientation of the asymmetric herringbones
is switched between each half cycle, allowing a correspond-
ing switch in the centre of rotation in the transverse flow. The
grooves are placed at an angle 6 with respect to the axial direc-
tion and the degree of asymmetry p is measured by the fraction
of channel width occupied by the wide arm of the herringbones.

The full depth of the grooves is 30.6 um, given by 2ah, where
a is the ratio of groove half-depth to full channel height and the
groove wave vector, ¢ is 277/100 um™!, as shown in Fig. 1. Due
to the repeating cycles, the velocity field in the axial direction
can be assumed to be periodic and hence the velocity field in one
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Fig. 1. Staggered herringbone mixer (from [17]).

mixing cycle can be obtained and reused repeatedly for succes-
sive cycles. Details of the mixer geometry and fluid properties
are summarised in Table 1.

2.1. Velocity field

The 3D velocity field for one complete mixing cycle was
computed using COMSOL Multiphysics which is a commercial
modelling software based on the finite element method. The sim-
ulations were run as steady state incompressible Navier—Stokes
flow, with periodic boundary conditions at both inlet and outlet.
This enables long streamline integrations to be performed using
the velocity field of a single mixing cycle if entrance flow effects
are neglected. No-slip boundary conditions were applied at all
other channel walls. The volumetric flow through the mixer was
set by specifying a pressure drop and setting the pressure at the
outlet equal to the pressure at the inlet minus the pressure drop.
The number of mesh elements in the model is 30712 and the
simulations were performed on Windows XP with Pentium IV
3.00 GHz CPU and 2 GB of RAM.

Evaluation of mixing performance is typically carried out
by simultaneously solving the Navier—Stokes and continuity
equations for the velocity field and the convection—diffusion
equations for the concentration profiles in the mixer. However,
this approach introduces artificial diffusive fluxes due to dis-
cretisation errors, especially for liquid/liquid mixing [10,22].
Lagrangian particle tracking methods, where the trajectories of
massless tracer particles are computed have been used to char-
acterize the mixing performance, to avoid numerical diffusion
problems [18-21,24,25,29]. The 3D velocity field was first com-
puted as described above. Streamline integration of the velocity
field described in the following section, allows the particle tra-
jectories in the micromixer to be computed.

Table 1

Mixer geometry and fluid properties

Mixer
Channel width, w (um) 200
Channel depth, A (m) 85
Length per cycle (mm) 1.516
Number of grooves per cycle 12
Relative groove depth (a) 0.18
Wave vector, g (wm~1) 27/100
Groove asymmetry, p 2/3
Groove angle, 6 (°) 45

Fluid properties
Density (kg/m?) 1200
Viscosity (Pas) 0.067
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2.2. Particle tracking computations

The particle trajectories in the herringbone mixer were
obtained by solving the vector equation of motion for each
particle:

dr _ v(x) (M
dr

For a particle at a given location (x, y, z), the particle velocity
is obtained by interpolating the velocity field from the solution
of the Navier—Stokes and continuity equations. The COMSOL
particle tracking algorithm was modified to allow for the veloc-
ity field obtained in a single mixing cycle to be utilised over
successive mixing cycles. The algorithm to achieve this was set
up as follows:

(i) Based on the particle axial position and mixer length per
cycle, establish in which cycle number the particle is
located.

(i) Determine the equivalent position in the first mixing cycle
(where the velocity field solution is available).

(iii) Interpolate the velocity field solution to obtain the velocity
at that position.
(iv) Calculate new position by solving (1).

The particle moves to a new position down the channel length
at every time step, information about the new coordinates is
stored and the procedure repeated for the specified number of
time steps. A standard fourth order Runge-Kutta method with
fixed time steps was used. The size of the time step was selected
carefully to avoid losing particles (too big a time step will result
in the particle moving to a position outside the solution domain
and the particle is then ‘lost’) while at the same time avoiding
excessive computation time. The simulations were carried out at
two time different steps, at i and 4/2, and the results compared.
If the difference between the two was small, then the solution
at h was accepted, otherwise the time step was reduced and the
procedure repeated. The coordinates of the particle at the end of
every mixing cycle were recorded.

2.3. Stretching

The stretching of material lines and surfaces by a flow is
useful for determining the interfacial area between components
which is a measure of the mixed state. A convenient means of
characterizing the stretching by the flow is to study the local
behaviour of small material vectors. A second particle tracking
algorithm was set up which allows the stretching of an infinites-
imal material vector I associated with each tracer particle to
be computed in addition to tracking the position of particles
[18,19], using a fourth order Runge-Kutta method with adaptive
time stepping. At the start of the mixer, the initial position of
each tracer particle was specified and an initial material vector,
l;=0=[1, 0, 0] was assigned to each tracer particle. The evolution

of vector [ is tracked by integrating (1) together with

dl

— =o'l 2

& (Vo) ()
The total accumulated stretching A experienced by each ele-

ment after some time is defined as

_m

= 3
lo] ©)

3. Results and discussion
3.1. Flow patterns

The cross-sectional velocity vector plots at various locations
along one mixing cycle at Re=0.01, as indicated in Fig. 2(a),
are shown in Fig. 2(b). The flow patterns are complex with a
strong transverse component (x and z components). As the flow
moves along in the axial direction, two counter rotating vor-
tices are produced, one large and one small, which meet over
the sharp edge (at x=1.3 for locations A and B and x=0.7 for
locations C and D) of the herringbone grooves (see Fig. 2) and
alternate periodically depending on the direction of asymmetry
of the herringbone grooves. The maximum and minimum veloc-
ity in the x, y and z directions are also indicated in Fig. 2, where
the negative sign represents flow in the opposite direction. The
velocity vector plots are in agreement with those reported else-
where [24,29]. The transverse flow velocity is approximately
an order of magnitude lower than the forward axial component,
with the velocity in the long arm of the herringbone higher than
that in the short arm. Fig. 3 shows the trajectories for 10 particles
initially located across the mixer cross-section. The particle tra-
jectories show small-scale helical motion similar to the results of
Wang et al. [21], which indicates folding and stretching of fluids.
The herringbone grooves aid mixing not only by creating sec-
ondary helical flow but also by ‘ditch mixing” where fluid from
one side of the channel is transported to the opposite side of the
channel in the grooves and rolls out from the grooves at the side
edge back into the main flow in the channel [34]. This results
in increased contact area between the two fluids that enhance
mixing. Mixing in the staggered herringbone mixer is therefore
enhanced by both the strong transverse flow which stretches
and folds the fluid interface and increased contact area by ditch
mixing.

3.2. Mixing simulation

To visualize the mixing in the staggered herringbone mixer,
~8000 tracer particles were initially placed uniformly in one-
half of the channel cross-section at the mixer entrance, starting
at 5 wm away from the walls in the x-direction and 2 pm away
from the z-direction, corresponding to around 2% of the length
scales in both directions, to avoid particles getting trapped in
those areas where the velocity is close to zero. All tracer particles
were released simultaneously and the position of the tracer parti-
cles was tracked along the mixer length as described earlier. The
tracer particles travel along the mixer length at different speeds
due to the laminar flow profile and the presence of dead volumes
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Fig. 2. Cross-sectional velocity vector plots at various axial positions for Re =0.01. (a) Axial position of the cross-sectional velocity vector plots. (b) Velocity vector
plots.
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Direction of flow

Fig. 3. Particle trajectories at 10 different initial locations ([x (wm), z (wm)]=[1, 38], [23, 38], [45, 38], [67, 38], [89, 38], [111, 38], [133, 38], [155, 38], [177, 38],
[199, 38]) along eight mixing cycles for r=0-10s and Re=0.01. (a) 3D view (y direction is compressed). (b) X—Z plane viewed from outlet.

in the herringbone grooves. Plots of particle distribution in the
mixer cross-section were obtained by recording the particle posi-
tions once they reached the end of each mixing cycle. This yields
striation patterns which are equivalent to those observed with a
continuous feed at steady state with the same initial conditions
because the trajectories followed by the tracer particles are time
independent; a tracer follows the same path as all other tracers
that pass through the same starting position regardless of its time
of introduction [26]. The mixing simulations were carried out
at Re=0.001, 0.01, 0.03, 1 and 10. The first three conditions
(Re=0.001, 0.01 and 0.03) correspond to three experimental
conditions used by Stroock et al. [17]. The last two conditions
were selected so that the effect of a larger range of Reynolds
number can be evaluated.

The mixer cross-sectional plots at Re ~0.01 at the mixer
inlet and at various locations downstream of the entrance are
shown in Fig. 4. The simulation plots were compared to pub-
lished experimental confocal micrographs at the same conditions
[17] and the evolution of striation patterns can be seen to be
qualitatively similar, indicating that the numerical simulation
method used can capture the flow phenomena accurately. Small
differences between the simulation and experimental micro-
graphs can be attributed to the fact that the computed velocity
field assumes identical fluid properties for the two inlets to
be mixed as this allows the velocity field to be used repeat-

edly over successive mixing cycles while in practice this was
clearly not the case. Additionally, the simulation plots do not
take into account molecular diffusion effects. The simulation
plots were also observed to be qualitatively similar to simulation
plots reported elsewhere [26,29]. The cross-sectional plots at the
same axial positions were observed to be qualitatively similar
at all Re, with no major differences in the patterns of the tracer
particles. The flow advection in a staggered herringbone mixer
was found to be independent of Reynolds number, in agreement
with other numerical studies on the staggered herringbone mixer
[26,30] as well as experimental results where the flow patterns
were found to be qualitatively similar up to Re=100 [17].

3.3. Coefficient of variance

While the mixing simulations allowed for a qualitative assess-
ment of mixing in a staggered herringbone mixer, a quantitative
description of the mixing quality affords a more practical means
of evaluating the mixing performance. The tracer mixing simula-
tions, carried out with Nto, the total number of particles =7872
and evaluated at Re=0.001, 0.01, 0.03, 1 and 10 were quan-
tified by computing the number-based coefficient of variance
(also known as relative standard deviation), which is the stan-
dard deviation of the particle distribution divided by the mean.
An x—z grid of 20 x 10 equal-sized cells (each cell with approxi-
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Fig. 4. Comparison of the evolution of particle tracer positions along the mixer length with confocal micrographs (from [17]) of an actual staggered herringbone
mixer. Both the simulation plot and experimental confocal micrographs were obtained at Re=0.01.

mate dimensions of 10 wm x 8.5 wm) was placed over the mixer
cross-section at the end of each mixing cycle. The number of par-
ticles in each cell, N; was computed based on the position of each
particle on the mixer cross-section and the average particle con-
centration per cell was then computed as N = Nt/(20 x 10),
where Nt is the total number of particles within the grid at the
end of each mixing cycle. The variance o> was calculated from

M a2
M (Ni— N
022211(4—’1), M =20 x 10 )

The number based coefficient of variance (COV) was then
computed from the following equation:

cov = 2 (5)
N

When the COV is zero, an ideal homogenization of the mix-
ture is obtained. The coefficient of variance at different mixing
cycles can be fitted to an equation of the form
o
N Aexp(—Bn), n = mixing cycle number 6)

The coefficient B [18,19] represents the rate of decrease of the
coefficient of variance per mixing cycle and provides a simple
quantitative estimate of the mixing rate while the coefficient
A represents the coefficient of variance of the unmixed inlet
stream. The results of the coefficient of variance plotted against
the number of mixing cycles at different Reynolds number is
shown in Fig. 5. The calculated coefficient of variance gradually
decreases with increasing number of cycles at all values of Re.
The change in coefficient of variance with increasing number
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Fig.5. Change in coefficient of variance with number of mixing cycles at various
Re (All data points at different Re overlap).

of cycles at Re=0.001 to 10 were observed to be very similar.
The value of the coefficient B was ~0.023 £ 0.002 in all cases
considered, indicating little difference in mixing rates. This is
consistent with the qualitative evaluation of the striation patterns
formed, which were observed to be independent of Re.

The total number of particles at each end-of-cycle cross-
section gradually decreases from the initial number of particles
released at the inlet, resulting in decreasing number of tracked
points with increasing mixer cycle, which affects the accuracy of
the calculations. This is due to increasingly more particles being
left behind in the cycle grooves, as a result of the dead volumes
in the mixer. The number of tracked points reduced by an aver-
age of 201 particles for every cycle, which represents an average
reduction of 6% per cycle. Additionally, the grid size used in the
calculations may limit the resolution of mixture homogeniza-
tion. While increased resolution can be obtained by using a finer
grid, this would also require a much larger number of particles to
be tracked (to minimise statistical uncertainty), hence the num-
ber of grid cells cannot be increased indefinitely (see [18]). In
this sense, the coefficient of variance and other statistical meth-
ods of quantifying mixers are probably not a good method for
comparing mixing performance in the staggered herringbone
mixer.

3.4. Stretching

Another method which has been used to quantify the rate
of mixing is the computation of the stretching histories along
with the trajectories of a set of material elements placed within
the flow [18,19,24]. This method has been employed in evaluat-
ing the mixing and chaotic behaviour in two-dimensional, time
periodic flows as well as three-dimensional static mixers. The
key to effective mixing is in producing the maximum amount
of interfacial area between two initially segregated fluids in the
minimum amount of time. The amount of intermaterial surface
generated in a region is directly proportional to the amount of
stretching experienced by fluid elements in that region; regions
with high rates of stretching provide good mixing while regions
with low rates of stretching provide poor mixing. The distance
between striations, is inversely proportional to the surface area.
Hence, the rate of stretching and folding affects the rate of
micromixing by both reducing the striation thickness (and hence

the diffusional distance) and increasing the interfacial area for
interdiffusion of components [35]. Chaotic flow is associated
with an exponential increase in stretching and folding, resulting
in a corresponding decrease in the axial length required for com-
plete mixing. Stretching computations can be used to evaluate
the chaotic behaviour and hence mixing efficiency in the mix-
ers, which for a time periodic system, can be expressed by the
Lyapunov exponent, § = tl_l)rgo (InA/t) [24,36]. The stretching
computations can also be used to characterize the distribution of
mixing intensities from the distribution of stretching magnitudes
in the mixer flow [18,19].

For the stretching calculations, 4100 particles were placed
uniformly across the channel cross-section at the mixer entrance,
5 pwm away from the channel walls in the x-direction and 2 pm
away in the z-direction. The tracer particle position and the accu-
mulated length stretch were tracked along the mixer length as
described earlier. At every periodic plane, both the tracer particle
position and the components of the stretch vector were recorded.
The geometric mean stretching values for all N tracer particles
was computed at every periodic plane from

1/N

N
hgso = [[r (7
i=1

The specific stretch per period, asg for a spatially periodic
flow, which is the direct analog of the Lyapunov exponent, § for
a time periodic flow [18,19,24], was computed from

1
asp = lim [ In )Lg750} , n =mixing cycle number  (8)
n—oo | n

The In (Ag 50) is plotted against the number of mixing cycles
in Fig. 6 for Re=0.001, 0.01, 0.03, 1 and 10. In chaotic flows,
the value a5 tends to positive limit values implying exponential
stretching and growth of inter material area (on average) while
in regular flows this value tends to zero [36]. The values of a5
at different Reynolds number were obtained from the gradients
of the plots in Fig. 6. The mean stretch, A 50 increases expo-
nentially with the number of mixing cycles at every Reynolds
number considered. The values of as5¢ were found to be similar
with no particular trend with respect to Re with o590 = 0.75 £ 0.01
in all cases. From the results of the mixing simulations, the form

H
8_ 3
7 i
.
6 :
% ]
& 5
S 5
= 4
- 4 * + Re = 0.001
3 x «Re=0.01
5] + Re=0.03
Re=1
1 xRe=10
0 . . . . : : : : !
0 1 2 3 4 5 6 7 8 9

Mixing cycle number

Fig. 6. Change in mean stretch of all vectors, A4 50 vs. number of mixing cycles
at various Re (data points at different Re overlap).
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of the flow remains qualitatively the same at different Re number,
which is in agreement with published findings [17,26,30]. The
difference in mixing uniformity at various Pe number observed
experimentally can be attributed to the effects of molecular dif-
fusion and hence to compute the required length for complete
mixing, the role of molecular diffusion must also be considered.

3.5. Mixing length calculation

As mentioned earlier, the exponential stretching of fluid
elements accelerates mixing in two different ways, that is by
reducing the striation thickness and by generating a greater
interfacial area for molecular diffusion. The ratio of penetra-
tion distance by molecular diffusion to striation thickness for a
time-periodic system evolves along the mixer length according
to [35]

0 [ D )" ©)
sOe  [(s0)22s

For a spatially periodic flow, the penetration distance due to
molecular diffusion increases along the mixer length while the
striation thickness is reduced from s(0) to s(n), according to the
stretching function, «. Eq. (9) for a spatially periodic system
then becomes

8y _{ Dt

1/2
2an
s(0ye—oan (s(O))ZZa(e 1)} (10

where 7 is the residence time per mixing cycle. Mixing is
assumed to be complete when the penetration distance from
molecular diffusion becomes equal to the striation thickness
[35]. This happens when

[ Dt
1=

2an 12
o2 T 1)} (b

Rearranging Eq. (11), npix the number of mixing cycles
required (and hence y, the length) for complete mixing is deter-
mined from

In(((s(0)*2a/ D7) + 1)

Nmix = Y (12)

Y = Rmix * Leycle (13)

The required mixing lengths (ys59) computed using the mean
stretch values (asp) are shown in Fig. 7 along with mixing
lengths obtained experimentally by Stroock et al. [17]. The mix-
ing lengths calculated using the specific stretch per period were
observed to be different from those derived experimentally.

This can be due to the following:

e The experimentally derived values are based on measure-
ments in the central 50% of the cross-sectional area, where
striation thickness reduction is much slower than say, at the
bottom or sides of the channel. Additionally, the experimen-
tally derived mixing lengths were determined for 90% mixing.

e The specific stretch per period used to compute the mixing
lengths was derived from the mean stretch values in each
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=
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0 5 10 15 20
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Fig. 7. Computed and experimentally derived mixing lengths vs. In(Pe).

period (this represents rate of increase in the mean stretch val-
ues with increasing mixing cycle), when in reality there exists
a log-normal distribution of stretch values [35], as shown in
Fig. 8. The scatter plots represent the probability density cal-
culated from frequency data for the stretch values at various
mixing cycles while the smooth lines represent normal dis-
tribution curves fitted using the computed mean and standard
deviation values. The normal distribution is defined as the
distribution with density:

_ L peempep
f(X) Y (14)
where X represents In(X), m represents the mean and o repre-
sents the standard deviation.

e The accuracy of the computed stretch values can be sensitive
to the time step used. While this problem may be alleviated
using a smaller time step and implementing adaptive time-step
control, there is a trade-off between using an infinitely small
time step to improve accuracy and running the simulation
for a sufficiently long time to ensure a substantial number of
particles are advected to the end of the mixing cycles (smaller
time step means that for the same run time, the particles may
not reach the same axial distance downstream of the entrance,
resulting in smaller sample size).

In the design of mixers, it is of interest to ensure that the
mixer length provided can achieve sufficient mixing. One way
of doing this, which avoids the problems mentioned above, is by
using a method which allows a conservative estimate of required
mixing length to be made. This can be done by replacing the
geometric mean stretching Ag 50, which represents the cut-off
point at which 50% of the stretch values have a higher value,
with a lower cut-off point in which at least 90% of the stretch
values are higher. Using the z-score,! this lower cut-off point was
determined to be at 1.2816 times the standard deviation below
the mean, as illustrated in Fig. 9(inset). The logarithm of (A 90)
is plotted against the number of mixing cycles in Fig. 9. The
values of agy (which represents the rate of increase of Aggp) at

! The z-score for a value y of a data set is the distance that y lies above or below
the mean, measured in units of the standard deviation. The z-score is defined
as z=y — m/o. The cut-off point was determined from a table of normal curve
areas [37].
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Fig. 8. Log-normal distribution of stretch values at Re=0.01.

different Reynolds number were calculated from the gradients
of the plots in Fig. 9, to be =0.43 £ 0.01 for all cases. This gives
a conservative mixing length value and can be thought of as
the point where 90% of the mixture has a penetration distance
at least equal to the striation thickness. The required number of
mixing cycles and hence mixing length can be similarly obtained
from equations:

_ In(((s(0))*2at99/ D7) + 1)
0= 20190

5)

Y90 = 190 * Leyele (16)

As seen in Fig. 7, the staggered herringbone mixer allows
rapid mixing even at high Pe numbers. In the same figure, the
required mixing length in a plain channel with characteristic
length d, by diffusion alone is plotted from ygir = it x(d>/ D) =
d x Pe (see “Diffusional” in Fig. 7). It is clearly seen that the
herringbone mixer shows a marked reduction in mixing length
to that required for diffusive mixing alone.

3.6. Pressure drop
The pressure drop across one cycle of the staggered herring-

bone mixer was obtained from the velocity field simulation and is
presented in Fig. 10 as a function of Re. For comparison, the pres-
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Fig. 9. Change in stretch value, Ay 9o vs. number of mixing cycles at various Re
(data points at different Re overlap).

sure drop across a grooveless channel of the same dimensions
is also plotted in Fig. 10. The latter is calculated using

128uLQ

AP
ndg

a7

The pressure drop increased linearly with Reynolds number
and was slightly lower than the pressure drop in a grooveless
channel by 7.5% at Re<10. It has been previously reported
that the presence of grooves effectively weakens the no-slip
condition, resulting in lowering of the pressure drop compared
to that in a simple grooveless channel [34]. The groove type,
groove depth and number of grooves per cycle have negli-
gible effect on the pressure drop although the width of the
grooves appears to have a stronger effect on pressure drop
[24,25]. These results further demonstrate the potential ben-
efits of using the staggered herringbone mixer to enhance
mixing, as unlike static mixing elements, the presence of the
grooves reduce the energy costs compared to a plain chan-
nel.
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Fig. 10. Change in pressure drop across one mixing cycle with Reynolds number.
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4. Conclusions

The mixing performance of the staggered herringbone mixer
was evaluated numerically at Re =0.001-10. The velocity field
was obtained via CFD simulations. Particle tracking methods
were used to quantify the mixing performance to avoid numer-
ical diffusion problems. Mixing is enhanced in the staggered
herringbone mixer by the formation of a double helical flow in
the mixer which alternates from one side of the channel to the
other, depending on the asymmetry of the herringbone grooves
as well as by ditch mixing, where fluid from one side of the chan-
nel is transported to the opposite side via the grooves, resulting
in increased contact area for mixing. The particle distribution
at the end of every mixing cycle was obtained for all cases and
the striation patterns were found to be qualitatively similar to
published work.

Several methods to quantify the mixing performance of the
staggered herringbone mixer were investigated. The coefficient
of variance at the end of each mixing cycle was computed
and the mixing quality was found to be independent of Re.
The stretching histories for material elements associated with
each particle tracer were also computed. The specific stretch
per cycle was obtained from the stretching calculations and
taking into account the effects of diffusion, the mixing length
required for complete mixing was evaluated. The calculated
mixing lengths were lower than experimentally derived values.
The difference in calculated and experimentally derived values
could be due to the fact that the experimentally derived values
were based on measurements in the central 50% of the mixer
cross-sectional area. Additionally, the specific stretch per cycle
used to compute the mixing lengths were derived from the mean
stretch values in each cycle, while in practice, there exists a
log-normal distribution of stretch values. Using ago, which rep-
resents the rate of increase of Aggp values (cut-off point for
Ag in which 90% of the computed stretch values are higher),
allowed for a conservative estimate of required mixing length to
be made.
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